

Autorità di Bacino Distrettuale dell'Appennino Meridionale

Ore:9.00

6 febbraio 2025

RISULTATI DELLE MODELLAZIONI PRELIMINARI DEI FLUSSI IPER-CONCENTRATI E STABILITÀ DEI VERSANTI

In memoria del Professore PASQUALE VERSACE

Piazza antica Reggia 18 - ISCHIA – Sede struttura Commissariale

ASPETTI GEOTECNICI NELLA STABILITÀ DEI VERSANTI Francesco Silvestri

(nonché Anna d'Onofrio, Giovanni Forte, Luca Pagano, Marianna Pirone, Antonio Santo et al.)

Dipartimento di Ingegneria Civile, Edile e Ambientale Università di Napoli "Federico II"

- Ischia come laboratorio multi-hazard sull'instabilità di versante
- Fattori d'influenza: predisponenti, preparatori, d'innesco
- Effetti del grado di saturazione delle coltri sull'instabilità statica e sismica
- Analisi multi-scalare dell'instabilità in condizioni sismiche
- Conclusioni

Ischia: caso paradigmatico di multi-hazard in contesto vulcanico

Laboratorio peculiare per lo studio dell'interazione tra diversi geo-hazards

Eventi sismici e franosi reiterati e localizzati sempre nella stessa area!!!

Solo coincidenze?

Natura vulcanica e risorgenza del blocco epomeico = fattori geodinamici di connessione tra gli hazard sismico e idrogeologico

Ricorrenza dei terremoti storici

Magnitudo < 5 e intensità rapidamente ridotta con la distanza

٠

٠

Natura della sismicità dell'isola

Intensità macrosismiche evento 21 agosto 2017 - Mw=3.9

2

- Sismicità influenzata dalla natura vulcanica dell'isola ٠
- Ipocentri superficiali e concentrati nella zona nord dell'isola ٠ dove lo strato sismogenetico fragile è caratterizzato da maggiore spessore
- A sud gli sforzi tettonici producono deformazioni viscose ٠ piuttosto che fratture nella roccia (transizione fragile - duttile a bassa profondità)

Ricorrenza dei fenomeni franosi e alluvionali

Novembre 2009

(Santo et al., 2012)

Novembre 2022

Natura dei fenomeni franosi

Fenomeni di scorrimento osservati il 26.XI.2022

Zona d'innesco sommitale della frana di cava Celario

Discontinuità morfologiche:

Scarpata sommitale di origine strutturale localmente sede di innesco della frana di Via Celario

Scarpata di origine strutturale di altezza maggiore di 10 m localmente sede di accelerazione e amplificazione della frana di Via Celario

Classificazione cinematica tradizionale e in condizioni sismiche

Il progetto MASLIDE: una panacea o una ricerca applicata?

Multi-level Approach for the Study of Landslides InduceD by Earthquakes

Workpackage	Task	sk Attività Is		ll sem	III sem	IV sem
	T1.1	Acquisizione e sintesi di dati topografici, geologici e geotecnici esistenti				
WP1 Acquisizione dati esistenti, indagini sperimentali e rilievi in situ	T1.2	Rilevamento di dettaglio dei siti di studio ed indagini in situ				
	T1.3	Prove geotecniche di laboratorio				
	T2.1	Generazione mappe di scuotimento sismico per analisi di livello II				
WP2 Elaborazione dati sismici e interferometrici	T2.2	Generazione/selezione di accelerogrammi sintetici/naturali per analisi dinamiche a Livello III e IV				
	T2.3	Elaborazione dati interferometrici				
	1210	ome / CRONACA / Instabilită sismica, al via findagine con la "regia" della Tederico II				
	E.R.C	INACA.				
WP3 Analisi di stabilità multilivello	Instabilità sismica, al via					
	l'indagine con la "regia" della					

Federico II

L'Ateneo ha approvato il finanziamento di 40mila euro per il progetto biennale di studio del sottosuolo nei territori isolani colpiti dal sisma del 2017. La soddisfazione del Commissario Schilardi, che finanziò la microzonazione, base da cui partirà l'attività di ricerca caratterizzata da un'inedita metodologia interdisciplinare

Approccio multi-scalare per lo studio dell'instabilità sismica

Livelli I-II tipici della scala territoriale, Livelli III-IV applicabili alla scala del singolo sito/versante

Livello	Metodo di analisi	Moto sismico di riferimento	Legame costitutivo	Indagini e prove geotecniche	Risultati tipici
I	Criteri di screening	Magnitudo e distanza	-	-	Fenomeno si/no
II	Pseudo-statica Metodi empirici	Accelerazione massima a _{max} Magnitudo Altri parametri sintetici del moto	Rigido-plastico Effetti deformabilità	Tradizionali in sito e lab. Misure di V _s	Coefficiente di sicurezza (LIQ, STP) Spostamenti (STP)
ш	Dinamica semplificata		Mezzo monofase Lineare equivalente (LIQ) Rigido-plastico (STP)	c.s. più	Accelerogrammi Spostamenti Tensioni totali Deformazioni
IV	Dinamica avanzata	Accelerogramma (-i) a(t)	Mezzo polifase Elasto-plastico	in laboratorio	c.s. più Pressioni interstiziali Tensioni efficaci

STP = Stabilità dei pendii; LIQ = Liquefazione (*Silvestri & d'Onofrio, 2014*)

Criteri di screening magnitudo-distanza

A Ischia, il massimo terremoto storico (1883) ha avuto M = 4.3, ma...

I fenomeni di instabilità sismica indotti dal terremoto del 1883

instab_PAI_IFFI 48% dell'area di studio!!!

- crolli dalle scarpate del Mt. Epomeo (eventi 1881, 1863, 1828) (Guadagno & Mele, 1995)
- colate di detrito / scorrimenti traslativi (Guadagno & Mele, 1995)
- scorrimenti traslativi evento 1883 (Guadagno & Mele, 1995)
- fratture evento 1883 (CEDIT)
- frane evento 1883 (CEDIT)
- effetti multipli evento 1883 (CEDIT)

Perhaps one of the most interesting phenomena accompanying the Ischian earthquakes, and sometimes taking place spontaneously without their aid, is the occurrence of landslips, and the detachment of rocks. Anyone

From the incoherent nature of this latter, and the enfeebled support of superficial vegetation, a very extensive mass was detached by the earthquake and swept down into the gorge below, thoroughly blocking it up. The crumbling away of the raw surface continued, and even at present small landslips continually occur. Some weeks after the earthquake, when some torrential rains fell over the island, much of this material was swept out of the gorge, inundating the lower parts of Casamicciola with volcanic mud or « lava d'acqua ».

(da Johnston-Levis, 1885)

Inventario complessivo dei fenomeni di instabilità + aree liquefacibili

Spiaggia di San Montano

Conclusioni

Per tutte le motivazioni sopraelencate, vista l'incertezza e la sovra-semplificazione del metodo per la verifica della suscettibilità alla liquefazione, l'applicazione delle linee guida relative alla liquefazione nel comune di Casamicciola Terme oggetto dell'Ordinanza n.1 del 28 novembre 2018 conduce alla scelta di non definire nella carta delle MOPS zone di attenzione per liquefazione.

Si rimanda ad ulteriori approfondimenti da effettuarsi anche previa esecuzione di nuove indagini e test di laboratorio nelle aree indicate di seguito in Figura 169 che corrispondono alla fascia settentrionale tra la linea di costa a nord e i terrazzamenti a sud.

Marina di Casamicciola

Figura 169 - Quadro d'insieme delle aree necessarie di approfondimento per le verifiche a liquefazione, in aree cerchiate in rosso.

Quale approccio 'multi-hazard' per la valutazione del rischio frana?

Classifica delle possibili relazioni di interazione tra gli hazard (*da Gill e Malamud, 2014, 2016*)

- Hazard che innesca un secondo hazard
- Hazard che modifica la probabilità di occorrenza di un secondo hazard
- Hazard che innesca un secondo hazard in presenza di un evento catalizzatore
- Contemporaneità di due hazard

Relazioni di interazione caratterizzate da probabilità di occorrenza anche molto diverse tra loro!

Come la variabilità delle condizioni idro-meteoriche può influenzare l'instabilità sismica?

- Ischia come laboratorio multi-hazard sull'instabilità di versante
- Fattori d'influenza: predisponenti, preparatori, d'innesco
- Effetti del grado di saturazione delle coltri sull'instabilità statica e sismica
- Analisi multi-scalare dell'instabilità in condizioni sismiche
- Conclusioni

Fattori predisponenti - Legenda geo-litologica adottata per la MS

Negli studi di Microzonazione Sismica (MS) la legenda della CARG è stata in parte semplificata e convertita nella codifica standard della *Commissione Tecnica per la Microzonazione Sismica (2020)*

cfr. tabelle di conversione legenda litotipi in *Mancini et al. (2021) - supplementary material*

Fattori predisponenti - Caratteri litologici generali del sottosuolo

Fonti delle indagini esistenti prima della frana del 25.XI.2022:

Piani Regolatori, studi di Microzonazione Sismica, progetto MASLIDE

Indagini in sito:

- 40 sondaggi + SPT
- 20 DH
- 296 HVSR
- 71 MASW
- 10 array 2D

Prove di laboratorio:

- 21 prove TD
- 4 prove TX
- 9 CTS
- 10 CSS
- 2 SS

Indagini recenti nell'area della frana del 26.XI.2022

- analisi granulometriche
- misure di permeabilità satura
- misure di suzione
- prove di taglio diretto

Organizzazione del *database* sul sottosuolo (DICEA-Commissariato)

<u>Mappe e perimetrazioni</u>	DTM, curve livello, pendenze CARG, carta geologico-tecnic Perimetrazioni frane CARG, I Sorgenti sismiche, fenomeni Profondità plf Bacini, reticoli etc	e, ortofoto a MS, MOPS, MS III livello FFI, PAI, storiche da letteratura co-sismici EMERGEO e CEDIT
		PRG Studi MS
	Casamicciola Terme shp	Progetto UniNa MASLIDE
	Casamicciola Terme pdf	Regione Campania x Pi.Ri. Altro (INGV, Prof.,)
<u>Indagini geo</u> (localizzazioni e dati bruti sondaggi, geofisiche sup. e	Lacco Ameno shp Lacco Ameno pdf	_
in foro, penetrometri, laboratorio, etc.)	Forio shp Forio pdf	
<u>Monitoraggio spostamenti</u> (mappe, xls)	ERS 1992-2000 ENVISAT 2003-2010 COSMO SkyMed 2017-2019 Inclinometri	
Elaborazione dati	Sintesi prove lab e in sito (xls Sezioni (dwg, pdf) Colonne stratigrafiche MOPS Mappe parametriche e di zor	, pdf) (pdf) nazione x instabilità statica/sismica e liquefazione

Fattori predisponenti - Caratteri stratigrafici: valutazione spessori erosi

<u>Valutazione degli spessori erosi durante l'evento del 2022</u>: effettuata confrontando cartografie differenti pre- e post-evento mediante DoD (*Dem of Difference*) \rightarrow aree in erosione (differenze negative) vs. aree in accumulo (differenze positive)

Spessori medi dei corpi di frana compresi tra 1.5 e 2.7 m (media e mediana \approx 2 m)

DTM pre-evento: rilievo lidar del 2009

DTM post evento: rilievo lidar del 2022

Stima volume totale mobilitato $\approx 236.000 \text{ m}^3$

Fattori predisponenti - Caratteri stratigrafici: valutazione spessori erosi

Valutazione degli spessori erosi lungo Cava Celario effettuata mediante DoD nella prima emergenza dopo l'evento del 2022

Analisi speditiva delle condizioni idrologiche e geomorfologiche del reticolo di drenaggio, dall'area sorgente delle colate fino all'area urbanizzata Rapporto Task 2 prima emergenza (*Santo et al., 2022*)

Fattori predisponenti - Caratteri stratigrafici: valutazione volumi erosi

<u>Valutazione dei volumi erosi durante l'evento del 2022</u>: effettuata confrontando cartografie differenti pre- e post-evento mediante DoD (*Dem of Difference*) \rightarrow aree in erosione (differenze negative) vs. aree in accumulo (differenze positive)

Bacini con max volumi mobilitati:

Cava Fasaniello-Ervaniello $\approx 65000 \text{ m}^3$ Cava Celario $\approx 56000 \text{ m}^3$ Cava del Puzzillo $\approx 48000 \text{ m}^3$

Fattori predisponenti - Caratteri stratigrafici: valutazione spessori erodibili

Valutazione spessori potenzialmente erodibili: mediante 100 fiorettature e 14 tomografie sismiche in 9 settori (A ÷ I) posizionati nella parte alta del versante nord del Monte Epomeo, e alla base di Cava Celario

Spessore della coltre piroclastica identificato in base a velocità delle onde P $V_P \le 500$ m/s

estensione dell'area + difficoltà logistiche (e diplomatiche...)

indagini in numero minore del previsto allineamenti e distanze non regolari (tra 3 e 30 m)

Fattori predisponenti - Caratteri stratigrafici: valutazione spessori erodibili

Prov	a Fl	Prov	ra F2		Prov	ra F3	Γ	Pro	va F4	Prov	ra F5	
Prof (m)	sec	Prof (m)	sec	1	Prof (m)	sec	1	Prof (m)	sec	Prof (m)	sec	
0,2	1	0,2	1	1	0,2	1	1	0,2	1	0,2	1	
0,4	1	0,4	1	1	0,4	1	1	0,4	1	0,4	1	
0,6	1	0,6	10		0,6	2	1	0,6	2	0,6	1	
0,8	1	0,8			0,8	1	1	0,8	2	0,8	2	
1,0	10	1,0		1	1,0	10	1	1,0	2	1,0	2	
1,2		1,2			1,2			1,2	10	1,2	2	
1,4		1,4			1,4			1,4		1,4	10	
				-								

Prova F6		Prov	a F7	Pro	va F8	Pro	Prova F9		Prova F10		
Prof (m)	SEC	Prof (m)	sec	Prof (m)	sec	Prof (m)	sec	Prof (m)	SEC		
0,2	1	0,2	1	0,2	1	0,2	1	0,2	1		
0,4	1	0,4	1	0,4	1	0,4	1	0,4	1		
0,6	1	0,6	1	0,6	1	0,6	1	0,6	1		
0,8	2	0,8	1	0,8	1	0,8	1	0,8	10		
1,0	2	1,0	2	1,0	1	1,0	1	1,0			
1,2	2	1,2	10	1,2	3	1,2	10	1,2			
1,4	3	1,4		1,4	2	1,4	0	1,4			
1,6	3	1,6		1,6	2	1,6	0	1,6			
1,8	3	1,8		1,8	2	1,8		1,8			
2,0	3	2,0		2,0	3	2,0		2,0			
2,2	10	2,2		2,2	3	2,2		2,2			
2,4		2,4		2,4	3	2,4		2,4			
2,6		2,6		2,6	10	2,6		2,6			
		1		1		1	1	1	1		

FIORETTATURA CERCHIO D									
PROVA	PROF (m)	Max(m)	Min (m)	MEDIA (m)					
F1	1								
F2	0,6								
F3	1								
F4	1,2								
F5	1,4	2.6	0.6	1 2 2					
F6	2,2	2,0	0,0	1,52					
F7	1,2								
F8	2,6								
F9	1,2								
F10	0,8								

Fattori predisponenti - Caratteri stratigrafici: valutazione spessori erodibili

- Le fiorettature con spessori < 0.5 m e 0.5÷1 m sono localizzate soprattutto nella parte sommitale del versante N dell'Epomeo dove le pendenze sono più elevate (ex. Zona Cava Celario)
- Gli spessori > 1 m sono presenti nelle aree di impluvio concave e dove le pendenze sono relativamente più basse
- Intervalli valori per bacini: 0.4 2.6 m per Cava Celario

0.4 - 2.2 m per Cava Cuccufriddo 0.6 - 2.8 m per Cava del Monaco

Lo spessore della coltre decresce con la pendenza del versante in misura diversa rispetto ad altri contesti in Campania (Sarno: terreni vulcanici da caduta)

Fattori predisponenti - Caratteri idrogeologici

Profondità media stagionale dell'acquifero basale Evento alluvionale Frana profondità della falda di base (m dal p.c.) 0-5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 > 30 limite dell'acquifero basale del Monte Epomeo sorgente basale

(mod. da *Piscopo et al., 2019*)

0.001 Media Casamicciola 0.0008 k_s=2.7·10⁻⁶ m/s k_s.t (m) 0.0006 0.0004 0.0002 Monti Lattari $k_s = 1.10^{-6} \text{ m/s}$ 0 100 200 300 400 0 t (s) Ghiaia Limo Sabbia Argilla 100 Fuso coltre 90 Monti Lattari 80 70 passante, p (%) 60 50 40 30 Fuso coltre 20 Casamicciola

10 0

0,0001

0,001

0,01

Prove in permeametro a carico costante

01 0,1 diametro, d (mm) 10

100

Fattori predisponenti - Resistenza al taglio dei terreni di copertura

Fattori preparatori – Curva caratteristica del terreno non saturo

Contenuto d'acqua volumetrico $\theta = n_w = nS_r$ (n = porosità; S_r = grado di saturazione) (a) $\theta_s = 0.34$ æ^{0.3} (1) Essiccamento 0.2 ¥ 0.1 10 100 1000 0.1 (2) Suzione di matrice, s (kPa) (c) 10-2 (1) $k_{e} = 2 \ 10^{-3} \ cm/s$ (s/10 Essiccamento (3) 10.6 ÷ 10-8 10-10 10 1000 0.1 100 Suzione di matrice, s (kPa) (4)

Modello di curva caratteristica (van Genuchten, 1980)

$$\theta = \theta_r + (\theta_s - \theta_r) \left(\frac{1}{1 + (\alpha(u_a - u_w))^n} \right)^m$$

Fattori preparatori – Curva caratteristica e variabilità stagionale della suzione

(*Pirone et al., 2023*)

Fattori preparatori - Piovosità vs suzione in zona sommitale innesco

Sistema monitoraggio installato dal DICEA (e in corso di potenziamento)

Fattori d'innesco – Eventi sismici o meteorici estremi

- Ischia come laboratorio multi-hazard sull'instabilità di versante
- Fattori d'influenza: predisponenti, preparatori, d'innesco
- Effetti del grado di saturazione delle coltri sull'instabilità statica e sismica
- Analisi multi-scalare dell'instabilità in condizioni sismiche
- Conclusioni

Effetto della saturazione sulla resistenza al taglio dei terreni di copertura

Effetto della saturazione sulla stabilità delle coltri piroclastiche

T = 50 years

1000

6h 10^{12h} 24h 48h 100

d [h]

Il caso di Vallone Olivieri (Progetto CUR-CIS 2020, Vitale et al., 2021)

Selezione di diversi eventi di pioggia con intensità e durata variabili e tempi di ritorno crescenti

1h

0,1

3h

Curve di ritenzione e di conducibilità idraulica assunte per la coltre di terreno piroclastico

(Vitale et al., 2021)

Influenza di diversi profili di suzione sulla stabilità delle coltri piroclastiche

(Vitale et al., 2021)

Influenza dei diversi profili di suzione sulla stabilità al variare della piovosità

Valor medio e andamento idrostatico di suzione: instabilità solo per piogge di lungo periodo e lunga durata

Periodi 'umidi': instabilità anche per piogge frequenti e di breve durata

(Vitale et al., 2021)

Stabilità in condizioni sismiche: determinazione dell'accelerazione critica

Procedimento con metodi dell'equilibrio limite:

1) Assegnare un valore di tentativo del coefficiente sismico K_h

2) Ricercare il F_{Smin} e la superficie di scorrimento associata

3) Plottare la curva $F_s - K_h$ ottenuta con uno o più metodi d'analisi

4) Determinare K_c (= a_c/g) come il valore di K_h (ev. minimo tra i vari metodi) per cui F_s =1

Stabilità in condizioni sismiche: calcolo spostamenti (metodo di Newmark)

Blocco rigido

11mar/1

U A

 $a_{r}(t) = a(t) - a_{c}$

limitatamente agli intervalli in cui la velocità relativa $v_r(t)$ tra massa rigida e superficie è > 0 (anche con $a_r(t)<0$)

$$v_r(t) = \int a_r(t) dt$$

si ottiene lo **spostamento relativo residuo u**_r

$$\mathbf{u}(t) = \int \mathbf{v}_{\mathbf{r}}(t) dt$$

Stabilità in condizioni sismiche: effetti della parziale saturazione

Stabilità in condizioni sismiche: stima degli spostamenti da relazioni empiriche

Applicando estensivamente il metodo con database accelerometrici,

sono state ottenute relazioni predittive empirico-statistiche tra spostamenti e rapporto a_c/a_{max}

Stabilità in condizioni sismiche: mappatura della suscettibilità in termini di a_c

Stabilità in condizioni sismiche: dipendenza della suscettibilità dalla suzione

Condizione 'wet' (suzione = 5 kPa) Condizione 'dry' (suzione 35 kPa)

- Ischia come laboratorio multi-hazard sull'instabilità di versante
- Fattori d'influenza: predisponenti, preparatori, d'innesco
- Effetti del grado di saturazione delle coltri sull'instabilità statica e sismica
- Analisi multi-scalare dell'instabilità in condizioni sismiche
- Conclusioni

Azione sismica - Approccio Deterministico vs Probabilistico

Mappa probabilistica degli spostamenti sismo-indotti

Effetto della saturazione sugli spostamenti sismo-indotti

Aree critiche lungo il versante N dell'Epomeo – Condizione 'wet'

Le zone caratterizzate dagli spostamenti più significativi corrispondono:

- alle nicchie di distacco lungo la cornice sommitale
- alle sponde ripide dei valloni

Le stesse zone sono state interessate da scorrimenti in corrispondenza dell'evento franoso del 26.XI.2022

Aree critiche lungo il versante N dell'Epomeo – Condizione 'dry'

Le zone caratterizzate dagli spostamenti più significativi corrispondono:

- alle nicchie di distacco lungo la cornice sommitale
- alle sponde ripide dei valloni

Le stesse zone sono state interessate da scorrimenti in corrispondenza dell'evento franoso del 26.XI.2022

In presenza di suzioni elevate (stagione asciutta) le stesse aree non sarebbero interessate da instabilità sismoindotta

Area di studio progetto 'MASLIDE': Fango (Lacco Ameno)

Area studio Fango: inquadramento geolitologico + MOPS + sondaggi UniNa

Accumuli gravitativi di materiale eterogeneo ed eterometrico fino a blocchi monolitici di grandi dimensioni in matrice sabbioso argillosa

Depositi epiclastici massivi molto grossolani formati da mega blocchi (>10cm) o blocchi di tufo intensamente fratturati. Trattasi di debris avalanche derivanti dal collasso gravitativo del settore settentrionale del blocco risorgente del Monte Epomeo.

Epiclastiti da debolmente a mediamente litificate di colore giallastro e verdastro da massive a debolmente strutturate, composte da ceneri fine, litici lavici e tufi in matrice fine argillosa

Tufi massivi di colore da verde smeraldo a verde chiaro, costituiti da lapilli e bombe pomicee e scoriacee. Tufi ignimbritici litoidi massivi organizzati in grandi bancate tabulari

MOPS = Microzone Omogenee in Prospettiva Sismica

Area studio Fango: rapporti spettrali HVSR e prove downhole

Accumuli gravitativi di materiale eterogeneo ed eterometrico fino a blocchi monolitici di grandi dimensioni in matrice sabbioso argillosa

Depositi epiclastici massivi molto grossolani formati da mega blocchi (>10cm) o blocchi di tufo intensamente fratturati. Trattasi di *debris avalanche* derivanti dal collasso gravitativo del settore settentrionale del blocco risorgente del Monte Epomeo.

Epiclastiti da debolmente a mediamente litificate di colore giallastro e verdastro da massive a debolmente strutturate, composte da ceneri fine, litici lavici e tufi in matrice fine argillosa

Tufi massivi di colore da verde smeraldo a verde chiaro, costituiti da lapilli e bombe pomicee e scoriacee. Tufi ignimbritici litoidi massivi organizzati in grandi bancate tabulari

Area studio Fango: tomografie di resistività elettrica (ERT)

ERT1

ERT2

ERT3

ERT4

Azione sismica per analisi dinamiche: accelerogrammi spettro-compatibili

DN – De Novellis et al. 2018
C – Calderoni et al. 2019
N – Nazeri et al. 2021

	DN	С	N
L [m]	3000	3000	1000
w [m]	1800	1458.1	800
depth [m]	0	0	700
strike [°]	83	260	115
dip [°]	67	50	55
rake [°]	-85	-102	145
fault type	Ν	N	R
M ₀ [Nm]	1.8E+15	1.2E+15	2.5E+15
M _w	4.1	4.0	4.2
σ [bar]	1.57	1.60	33.16

$$M_{w} = \frac{2}{3} \log M_{0} - 10.3$$
$$\sigma = \frac{8}{3\pi} \cdot \frac{M_{0}}{w^{2}L}$$

(Madariaga, 1977)

Approccio del codice EXSIM (*Motazedian & Atkinson, 2005*)

$$U_{ij}(f,R) = S_i(f) \cdot A_{ij}(f,R) \cdot Z_i(f)$$

Sorgente

$$S_i(f) = \frac{\Omega_0}{\left[1 + \left(\frac{f}{f_c}\right)^2\right]} \qquad \qquad \Omega_0 = \frac{2\Phi M_0}{4\pi\rho V_s^3 R}$$

$$f_c$$
 = frequenza d'angolo
 Φ = direttività
 M_0 = momento sismico
 ρ = densità
 V_s = velocità onde S

Propagazione

$$A_{ij}(f,R) = \frac{1}{R}e^{-\frac{\pi fR}{Q(f)V_s}} \qquad Q(f) = Q_0 f^{\alpha}$$

Amplificazione locale $Z_i(f)$

Azione sismica per analisi dinamiche: accelerogrammi generati

Area studio Fango - analisi dinamica disaccoppiata

non viene mai superata l'accelerazione critica!!!

Area studio Fango – modello per analisi dinamica avanzata

	γ [kN/m³]	c' [kPa]	φ ' [°]	V _s [m/s]	G [MPa]	K [MPa]
GC/GM	15.1	0	33.6	300	139	647
SFCO	20.3	25	33.0	700	1016	4741
SFGRS1	17.9	15	35.0	700	894	4172
SFGRS2	17.9	15	35.0	974	1731	8077

shear strain, γ [%]

 $1 + \exp \left[\frac{1}{2} +$

 $M_{s} = y_{0} + -$

	а	b	x ₀	Yo
GC/GM	1.0000	-0.4136	-1.15036	0.0000
SFCO	0.8759	-0.3340	-0.83125	0.1241
SFGRS1/SFGRS2	0.8020	-0.7334	0.33203	0.1980

Area studio Fango – risultati analisi dinamica avanzata

- Ischia come laboratorio multi-hazard sull'instabilità di versante
- Fattori d'influenza: predisponenti, preparatori, d'innesco
- Effetti del grado di saturazione delle coltri sull'instabilità statica e sismica
- Analisi multi-scalare dell'instabilità in condizioni sismiche
- Conclusioni

Conclusioni (per ora...)

- Ischia è un caso paradigmatico di area vulcanica affetta da interazione tra hazard idro-meteorico e sismico
- Il sottosuolo ha una morfologia e litologia molto articolata: i meccanismi di instabilità indotti da eventi idro-meteorici e sismici possono essere localmente molto variabili ma si ripetono in maniera sistematica...
- I dati geotecnici disponibili sul territorio per le formazioni dominanti (un 'database consortile' in embrione) hanno permesso di poter derivare mappe indicative di stabilità e spostamenti in condizioni sismiche tenendo conto dell'effetto del grado di saturazione (suzione di matrice) sulla resistenza delle coltri instabili
- Le analisi preliminari in condizioni 'wet' e 'dry' (in attesa di dati dal monitoraggio di lungo periodo) hanno mostrato che uno stesso evento sismico potrebbe determinare effetti significativamente diversi in funzione della variabilità dei fattori preparatori legati alla stagionalità del regime di suzione
- Nel sito di studio di Fango le analisi dinamiche (basate su azioni sismiche stimate con approccio deterministico) forniscono previsioni di spostamenti confrontabili a parità di ampiezza dell'azione sismica
- I risultati sono fortemente influenzati dal meccanismo di sorgente, ma anche nel caso più pessimistico il contenuto energetico complessivo del segnale non è tale da produrre spostamenti preoccupanti (dell'ordine dei 10-20 cm)

Buona lettura!

Mancini M., Caciolli M.C., Gaudiosi I., Alleanza G.A., Cavuoto G., Coltella M., Cosentino G., Di Fiore V., d'Onofrio A., Gargiulo F., Milana G., Pietrosante A., Pompa P.P., Silvestri F., Vassallo M. (2021). Seismic microzonation in a complex volcano-tectonic setting: the case of northern and western Ischia Island (southern Italy). Italian Journal of Geosciences, 140(3), pp. 382-408, doi.org/10.3301/IJG.2021.10

Gargiulo F., d'Onofrio A., Silvestri F. (2021). Approccio multi-livello per le verifiche a liquefazione: un'applicazione all'isola di Ischia. Incontro Annuale dei Ricercatori di Ingegneria Geotecnica (online). Ed. Associazione Geotecnica Italiana, ISBN: 9788897517153.

Gargiulo F., Forte G., d'Onofrio A., Santo A., Silvestri F. (2022). *Seismic performance of slopes at territorial scale: the case of Ischia Island*. In: Wang, L., Zhang, JM., Wang, R. (eds) Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022). PBD-IV 2022. Geotechnical, Geological and Earthquake Engineering, vol 52, pp 1324–1331. Springer, Cham. <u>doi.org/10.1007/978-3-031-11898-2_113</u>

Alleanza G.A., d'Onofrio A., Gargiulo F., Silvestri F., Mancini M., Gaudiosi I., Caciolli M., Cavuoto G., Di Fiore V., Milana G., Vassallo M. (2022). Valutazione della risposta sismica locale di alcune aree dell'Isola di Ischia per la pianificazione di interventi di mitigazione del Rischio Sismico. XXVII Convegno nazionale di Geotecnica, 'La geotecnica per lo sviluppo sostenibile del territorio e per la tutela dell'ambiente'.

Gargiulo F., Ceres R., Mele L., Forte G., d'Onofrio A., Silvestri F. (2022). Verifiche a liquefazione mediante l'utilizzo di segnali simulati. Incontro Annuale dei Ricercatori di Ingegneria Geotecnica - IARG 2022, Caserta. Ed. Associazione Geotecnica Italiana, ISBN:9788897517108.

Gargiulo F. (2023). *Multi-level analysis of seismic ground instability in the volcanic island of Ischia (Italy)*. Tesi di Dottorato in Ingegneria Strutturale, Geotecnica e Rischio Sismico, XXXV ciclo, Università di Napoli Federico II

De Falco M., Forte G., Marino E., Massaro L., Santo A. (2023). UAV and field survey observations on the November 26th 2022 Celario flowslide, Ischia Island (Southern Italy). Journal of Maps, 19:1, 2261484, doi.org/10.1080/17445647.2023.2261484

Ceres R., d'Onofrio A., Gargiulo F., Silvestri F. (2024). Inter-disciplinary and multi-level study of seismic liquefaction susceptibility in the coastal area of Casamicciola Terme (Ischia Island, Italy). Proc. of the VIII International Conference on Earthquake Geotechnical Engineering, Osaka

d'Onofrio A., Ceres R., Gargiulo F. (2024). A multi-hazard perspective in the analysis of earthquake-induced landslides: the case of Ischia Island. Rivista Italiana di Geotecnica 3:14-37, doi.org/10.19199/2024.3.0557-1405.014

Coppola L., De Falco M., Forte G., Pagano L., Di Martire D., Calcaterra D., De Vita P., Tufano R., Guerriero L., Silvestri F. (2024). *Field monitoring of volcanic soil covers addressed to non-structural mitigation strategies: some observations on Celario slope at Casamicciola (Ischia).* Workshop RETURN - Bologna, 27-28-29 November 2024